1 Rappels et compléments sur les bijections

Définition 1 Soit E et F deux ensembles, et f : $E \to F$ une application. On dit que f est une bijection de E dans F si pour tout $y \in F$, il existe un unique $x \in E$ tel que y = f(x).

Autrement dit : f est bijective de E dans F, si tout élément de F admet un antécédent unique dans E par f, ou encore pour tout $y \in F$, l'équation y = f(x) admet une solution unique $x \in E$.

Il est très important de préciser les ensembles E et F!

Définition 2 Si $f: E \to F$ est une bijection alors il existe une application unique appelée l'application réciproque de f noté f^{-1} qui vérifie

$$f^{-1}\ :\ F\to E$$

et

$$\forall x \in E, f^{-1} \circ f(x) = x \; ; \; \forall y \in F, f \circ f^{-1}(y) = y.$$

 $L'application \ f^{-1} \ est \ une \ bijection \ de \ F \ dans \ E.$

Remarque Si f est bijective de E dans F alors pour tout $y \in F$ et $x \in E$, on peut écrire

$$y = f(x) \iff x = f^{-1}(y)$$

Exemples 1 A connaître par coeur! Voir tableau.

- Fonction "carrée" $x \mapsto x^2$ bijective ou pas ? Fonction "cube" $x \mapsto x^3$ bijective ou pas ?
- Fonction logarithme népérien et fonction exponentielle sont des bijections (à détailler).
- Fonction trigonométriques (cosinus, sinus et tangente) ne sont pas bijectives sur leur domaine de définition (à détailler).

1.1 Comment établir qu'une fonction est bijective ?

Dans la pratique, on peut vous demander de démontrer qu'une fonction de E dans F est bijective : utile par exemple pour la résolution d'une équation de la forme y = f(x) pour savoir s'il y a une unique solution ou pour la résolution d'inéquation de la forme $f(x) < \alpha$ (ou $f(x) > \alpha$).

Comment répondre à cette question?

On admet le théorème suivant :

Théorème 1 Soit f une fonction **continue et strictement monotone** sur un intervalle I de \mathbb{R} , alors f est bijective de I sur J = f(I). Son application réciproque $f^{-1}: J \to I$ est continue et strictement monotone sur J (elle a le même sens de variation que f).

A noter que J est un intervalle de \mathbb{R} car f est continue (d'après le théorème des valeurs intermédiaires).

En résumé pour établir qu'une fonction est bijective sur I:

- on montre que f est continue sur I,
- \bullet on montre que f est strictement monotone sur I.

En appliquant le théorème, on conclut que f est bijective de I dans J = f(I). Enfin, on rappelle le lien qui existe entre le graphe de f et de sa réciproque (dans un repère orthonormé).

Théorème 2 Dans un repère orthonormé, une application bijective et sa réciproque ont des représentations graphiques symétriques par rapport à la droite d'équation y = x.

2 Dérivée d'une fonction

2.1 Dérivée en un point

Définition 3 Soit $f:[a,b] \to \mathbb{R}$ et $x_0 \in]a,b[$. On appelle taux d'accroissement de f en x_0 , le rapport

$$\Delta = \frac{f(x) - f(x_0)}{x - x_0}$$

ou encore si on pose $x = x_0 + h$,

$$\Delta = \frac{f(x_0 + h) - f(x_0)}{h}$$

Interprétation graphique 1 On se place dans un repère orthonormé. Δ est le coefficient directeur de la droite passant par les points M de coordonnées (x, f(x)) et M_0 de coordonnées $(x_0, f(x_0))$

ou de la droite passant par M de coordonnées $(x_0+h, f(x_0+h))$ et M_0 de coordonnées $(x_0, f(x_0))$. Voir tableau.

Définition 4 Soit $f:[a,b] \to \mathbb{R}$ et $x_0 \in]a,b[$. On dit que f est dérivable en x_0 si la limite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

(limite du taux d'accroissement de f en x_0) existe et est finie. Dans ces conditions, on note

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f'(x_0)$ est appelé la dérivée de f en x_0 , on dit aussi le "nombre dérivé de f en x_0 ".

On a aussi, en utilisant la deuxième version du taux d'accroissement (où on pose $x = x_0 + h$), la définition suivante :

Définition 5 Soit $f:[a,b] \to \mathbb{R}$ et $x_0 \in]a,b[$. On dit que f est dérivable en x_0 si la limite

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

(limite du taux d'accroissement de f en x_0) existe et est finie. Dans ces conditions, on note

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Dans les exercices, on utilise la définition 4 ou 5 suivant le contexte de l'exercice.

Exemple 2 Montrons que f définie par $f(x) = \sqrt{x}$ est dérivable en $x_0 = 1$. Voir tableau.

On a également une autre définition possible pour la dérivabilité de f en x_0 (plus délicate mais utile parfois).

Définition 6 Soit $f:[a,b] \to \mathbb{R}$ et $x_0 \in]a,b[$. On dit que f est dérivable en x_0 s'il existe un réel A et une fonction ε tels que

$$f(x_0 + h) = f(x_0) + hA + h\varepsilon(h)$$
, où $\lim_{h\to 0} \varepsilon(h) = 0$

Dans ces conditions, on note $A = f'(x_0)$ (le nombre dérivé de f en x_0).

Propriété 1 Si f est dérivable en x_0 alors f est continue en x_0 .

Démonstration Voir tableau.

Attention La réciproque n'est pas vraie. Il existe des fonctions continues en un point qui ne sont pas dérivables en ce point.

A retenir dérivable \Rightarrow continue mais la réciproque est fausse!

Exemple 3 C'est l'exemple le plus classique (à connaître). La fonction valeur absolue, $x \mapsto |x|$ est continue en 0 mais n'est pas dérivable en 0. Voir tableau.

Interprétation géométrique de la dérivée en un point.

Soit f dérivable en x_0 . On considère le plan muni d'un repère orthonormé et \mathcal{C}_f la courbe représentative de f dans ce repère. On note M_0 le point de \mathcal{C}_f de coordonnées $(x_0, f(x_0), M$ le point de \mathcal{C}_f de coordonnées (x, f(x)) "proche" de x_0 . On rappelle que $\Delta = \frac{f(x) - f(x_0)}{x - x_0}$ est le coefficient directeur de la droite (MM_0) .

Si le point M tend vers le point M_0 (ce qui revient à dire que x tend vers x_0), la droite (MM_0) tend vers la tangente à la courbe C_f au point M_0 . On a donc le coefficient directeur Δ de la droite (MM_0) qui tend vers le coefficient directeur de la tangente i.e.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

est le coefficient directeur de la tangente à C_f au point M_0 . Voir tableau.

On déduit alors la propriété suivante :

Propriété 2 Si f est dérivable en x_0 , alors la courbe représentative de f dans un repère orthonormé admet une tangente au point M_0 de coordonnées $(x_0, f(x_0))$ qui a pour équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

 $f'(x_0)$ est le coefficient directeur (la pente) de la tangente à C_f en M_0 .

Remarque importante Soit f non dérivable en x_0 mais telle que

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$$

Alors on généralise la notion de tangente en disant que dans ces conditions la courbe représentative de f, C_f , admet une tangente verticale au point de coordonnées $(x_0, f(x_0))$ d'équation $x = x_0$. Donnons un exemple avec la fonction racine carrée.

Exemple 4 $x \mapsto \sqrt{x}$ n'est pas dérivable en 0 mais sa courbe représentative admet une tangente verticale au point de coordonnées (0, f(0)) = (0, 0).

Remarque Avec les notions de limite à droite et à gauche vues dans le chapitre précédent, on peut définir la notion de dérivée à droite et à gauche en un point.

On dit que f est dérivable à droite en x_0 si $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$ existe et est finie. On note

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

le nombre dérivé à droite de f en x_0 . En adaptant, vous pouvez définir la notion de dérivée à gauche en x_0 .

2.2 Fonction dérivée

Définition 7 Soit $f:[a,b] \to \mathbb{R}$. On dit que f est dérivable sur]a,b[si f est dérivable en tout point de cet intervalle. On notera $f':[a,b] \to \mathbb{R}$ sa dérivée.

Dérivées successives

Si f est dérivable sur]a, b[, on note f' sa dérivée, si f' est également dérivable sur]a, b[, on notera f'' sa dérivée (appelée dérivée seconde de f), ainsi de suite.... On définit ainsi les dérivées successives de f.

Définition 8 Soit n un entier naturel. On dit que f est de classe C^n sur]a,b[si $f^{(n)}$ (dérivée nième de f) existe et est continue sur]a,b[.

Remarques importantes

- Si n = 1, f de classe C^1 sur]a, b[si f est dérivable sur]a, b[et si f' est continue sur]a, b[.
- Si f est de classe \mathcal{C}^n pour tout entier n sur]a,b[, on dit que f est de classe \mathcal{C}^{∞} sur]a,b[.

3 Dérivées usuelles et règles de calculs

3.1 Fonctions usuelles

Pour chaque fonction f, on note \mathcal{D}_f son domaine de **définition** et D'_f son domaine de **dérivabilité** (domaine sur lequel elle est dérivable).

$$\mathcal{D}_{f} = \mathbb{R} \qquad f(x) = C, \ C \in \mathbb{R} \quad f'(x) = 0 \qquad D'_{f} = \mathbb{R}$$

$$\mathcal{D}_{f} = \mathbb{R} \qquad f(x) = x^{n}, \ n \ge 1 \quad f'(x) = nx^{n-1} \qquad D'_{f} = \mathbb{R}$$

$$\mathcal{D}_{f} = \mathbb{R}^{*} \qquad f(x) = \frac{1}{x} \qquad f'(x) = -\frac{1}{x^{2}} \qquad D'_{f} = \mathbb{R}^{*}$$

$$\mathcal{D}_{f} = [0, +\infty[\quad f(x) = \sqrt{x} \qquad f'(x) = \frac{1}{2\sqrt{x}} \qquad D'_{f} =]0, +\infty[$$

$$\mathcal{D}_{f} =]0, +\infty[\qquad f(x) = \ln(x) \qquad f'(x) = \frac{1}{x} \qquad D'_{f} =]0, +\infty[$$

$$\mathcal{D}_{f} = \mathbb{R} \qquad f(x) = e^{x} \qquad f'(x) = e^{x} \qquad D'_{f} = \mathbb{R}$$

$$\mathcal{D}_{f} = \mathbb{R} \qquad f(x) = \cos(x) \qquad f'(x) = -\sin(x) \qquad D'_{f} = \mathbb{R}$$

$$\mathcal{D}_{f} = \mathbb{R} \qquad f(x) = \sin(x) \qquad f'(x) = \cos(x) \qquad D'_{f} = \mathbb{R}$$

$$\mathcal{D}_f = \mathbb{R} - \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$$
 $f(x) = \tan(x)$ $f'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$ $D'_f = D_f$

Ce tableau sera complété dans les chapitres suivants.

Exercice 1 En utilisant les rappels effectués dans ce début de chapitre, montrez que

$$\sin x \sim x$$

Établir cette équivalence, revient à montrer que $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Voir tableau.

3.2 Règles de calcul

Propriété 3 Soit f et g dérivables sur un intervalle I de \mathbb{R} . Alors

- f + g est dérivable sur I et (f + g)' = f' + g'.
- fg est dérivable sur I et (fg)' = f'g + fg'.
- Soit $\alpha \in \mathbb{R}$, αf est dérivable sur I et $(\alpha f)' = \alpha f'$.
- Si g ne s'annule pas sur I alors $\frac{f}{g}$ est dérivable sur I et

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

En particulier, si g ne s'annule pas sur I, $\frac{1}{g}$ est dérivable sur I et $\left(\frac{1}{g}\right)' = \frac{-g'}{g^2}$.

A partir des dérivées usuelles rappelées dans le paragraphe précédent et la propriété ci-dessus, on peut facilement déduire :

Propriété 4

- Les fonctions polynômiales sont dérivables sur \mathbb{R} .
- Les fractions rationnelles (= quotients de polynômes) sont dérivables partout où leur dénominateur ne s'annule pas. Elles sont donc dérivables sur leur domaine de définition (et de continuité).

Théorème 3 Théorème fondamental sur la dérivée d'une composée

Soit $f: I \to J$ dérivable sur I et $g: J \to K$ dérivable sur J alors la fonction composée $g \circ f$ est dérivable sur I et

$$\forall x \in I, \ (g \circ f)'(x) = g'(f(x)) \times f'(x)$$

Remarque Importante (à retenir) Le plus difficile souvent est de déterminer le domaine de dérivabilité d'une fonction composée du type $g \circ f$. Si on applique le théorème ci-dessus, la fonction $g \circ f$ sera dérivable en tout point x où f est dérivable et f(x) appartient au domaine de dérivabilité de g.

A retenir Si on note D'_f le domaine de dérivabilité de f et D'_g le domaine de dérivabilité de g alors le domaine de dérivabilité de $g \circ f$ est déterminé par

$$\mathcal{D}'_{g \circ f} = \{ x \in \mathcal{D}'_f \text{ tels que } f(x) \in \mathcal{D}'_g \}$$

Exemples Comment appliquer ce théorème fondamental qui permet de dériver toute fonction composée ?

On va retrouver, ici, grâce au théorème fondamental, la dérivée d'un certain nombre de fonctions composées (vues au lycée).

• Soit h définie par $h(x) = \ln(f(x)) = (g \circ f)(x)$ où $g(x) = \ln(x)$. C'est bien une fonction composée. D'après le théorème 1, h sera dérivable en tout point $x \in \mathbb{R}$ où f est dérivable et f(x) > 0 (car la fonction ln est dérivable sur $[0, +\infty[)$).

On a

$$\mathcal{D}'_{g \circ f} = \{x \in \mathcal{D}'_f \text{ tels que } f(x) \in \mathcal{D}'_g =]0, +\infty[\} = \{x \in \mathcal{D}'_f \text{ tels que } f(x) > 0\}$$

Par ailleurs, en tout point x satisfaisant ces deux conditions, on a

$$h'(x) = (g \circ f)'(x) = g'(f(x)) \times f'(x) = \frac{1}{f(x)} \times f'(x) = \frac{f'(x)}{f(x)}$$

• Soit h définie par $h(x) = e^{f(x)} = (g \circ f)(x)$ où $g(x) = e^x$. C'est bien une fonction composée. D'après le théorème 1, h sera dérivable en tout point $x \in \mathbb{R}$ où f est dérivable car $x \mapsto e^x$ est dérivable sur \mathbb{R} (donc pas de contrainte ici sur le domaine de valeurs de f).

$$\mathcal{D}'_{q \circ f} = \{x \in \mathcal{D}'_f \text{ tels que } f(x) \in \mathcal{D}'_q = \mathbb{R}\} = \{x \in \mathcal{D}'_f\} = D'_f$$

Par ailleurs, en tout point x où f est dérivable, on a

$$h'(x) = (g \circ f)'(x) = g'(f(x)) \times f'(x) = e^{f(x)} \times f'(x) = f'(x)e^{f(x)}$$

• Soit h définie par $h(x) = \sqrt{f(x)} = (g \circ f)(x)$ où $g(x) = \sqrt{x}$. C'est bien une fonction composée. D'après le théorème 1, h sera dérivable en tout point $x \in \mathbb{R}$ où f est dérivable et f(x) > 0 (car la fonction $x \mapsto \sqrt{x}$ est dérivable sur $[0, +\infty[)$).

$$\mathcal{D}'_{g \circ f} = \{x \in \mathcal{D}'_f \text{ tels que } f(x) \in \mathcal{D}'_g =]0, +\infty[\} = \{x \in \mathcal{D}'_f \text{ tels que } f(x) > 0\}$$

Par ailleurs, en tout point x satisfaisant ces deux conditions, on a

$$h'(x) = (g \circ f)'(x) = g'(f(x)) \times f'(x) = \frac{1}{2\sqrt{f(x)}} \times f'(x) = \frac{f'(x)}{2\sqrt{f(x)}}$$

• Soit h définie par $h(x) = \cos(\omega x) = (g \circ f)(x)$ où $g(x) = \cos(x)$ et $f(x) = \omega x$. C'est bien une fonction composée. D'après le théorème 1, h sera dérivable en tout point $x \in \mathbb{R}$: en effet f est dérivable sur \mathbb{R} (fonction polynomiale) à valeurs dans \mathbb{R} et g est dérivable sur \mathbb{R} , du coup pas de souci pour dériver la composée.

$$\mathcal{D}'_{g \circ f} = \{x \in \mathcal{D}'_f = \mathbb{R} \text{ tels que } f(x) \in \mathcal{D}'_g = \mathbb{R}\} = \mathbb{R}$$

Et pour tout $x \in \mathbb{R}$,

$$h'(x) = (g \circ f)'(x) = g'(f(x)) \times f'(x) = -\sin(\omega x) \times \omega = -\omega \sin(\omega x)$$

• etc....

Au lieu d'apprendre chaque dérivée de fonction composée, il est judicieux d'apprendre le théorème 1 et de savoir correctement l'appliquer.

Exercice 2

- 1. Soit h définie par $h(x) = \sqrt{\frac{x+3}{x-1}}$.
 - a) Déterminer avec le plus grand soin, le domaine de dérivabilité de h.
 - b) Calculer sa dérivée.
- 2. Mêmes questions avec h définie par $h(x) = \ln(x^2 + 3x + 2)$.

4 Étude des variations d'une fonction

Le sens de variation d'une fonction dépend du signe de sa dérivée. En effet, on admet le théorème suivant :

Théorème 4 Soit f dérivable sur un intervalle I de \mathbb{R} . Alors

- i) f est constante sur I si et seulement si f'(x) = 0 pour tout $x \in I$.
- ii) f est strictement croissante sur I si et seulement f'(x) > 0 pour tout $x \in I$.
- iii) f est strictement décroissante sur I si et seulement f'(x) < 0 pour tout $x \in I$.

L'étude du sens de variation des fonctions dérivables est ramené à l'étude du signe de la dérivée.

4.1 Application à la recherche d'extremum

Soit f une fonction définie sur un intervalle I de \mathbb{R} et $x_0 \in I$.

 \bullet on dit que f admet un maximum (absolu) en x_0 si

$$\forall x \in I, \ f(x) \le f(x_0)$$

 \bullet on dit que f admet un minimum (absolu) en x_0 si

$$\forall x \in I, \ f(x) \ge f(x_0)$$

• on dit que f admet un maximum local (relatif) en x_0 s'il existe un voisinage V ($V \subset I$) de x_0 tel que

$$\forall x \in V, \ f(x) \le f(x_0)$$

• on dit que f admet un minimum local (relatif) en x_0 s'il existe un voisinage V ($V \subset I$) de x_0 tel que

$$\forall x \in V, \ f(x) \ge f(x_0)$$

Propriété 5 (Condition nécessaire) Soit f une fonction dérivable sur I et $x_0 \in I$. Si f admet un extremum local en x_0 alors $f'(x_0) = 0$.

Attention Cette condition est nécessaire mais pas suffisante. La fonction $x \mapsto x^3$ est dérivable en 0, sa dérivée s'annule en 0 mais cette fonction n'admet pas d'extremum en 0. Il n'est pas nécessaire non plus que la fonction soit dérivable en un point pour admettre un extremum en ce point : considérer la fonction $x \mapsto |x|$. Elle n'est pas dérivable en 0 mais elle admet un minimum absolu en 0.

Propriété 6 (Condition suffisante) Soit f une fonction dérivable sur I et $x_0 \in I$. Si f' s'annule et change de signe en x_0 alors f admet un extremum local en x_0 .

5 Différentielle d'une fonction

En mathématiques mais également en physique vous avez souvent utilisé la notion de différentielle : par exemple en électricité dans une EDL d'ordre 1, il apparait $\frac{\mathrm{d}i}{\mathrm{d}t}$ ou encore en mathématiques lorsqu'on note une intégrale $\int_a^b f(x) \, \mathrm{d}x$, on utilise dans l'intégrale l'élément différentiel $\mathrm{d}x$

Essayons d'expliquer cette notation et surtout que représente-t-elle ? Rappelons la définition 6 vue au tout début de ce chapitre.

f est dérivable au point a s'il existe une fonction ε telle que

$$f(a+h) = f(a) + hf'(a) + h\varepsilon(h)$$
 où $\lim_{h\to 0} \varepsilon(h) = 0$

On considère l'application notée df_a et appelée la différentielle de f au point a:

$$\mathbb{R} \to \mathbb{R}$$
$$h \mapsto f'(a)h$$

En physique (mais aussi en maths) on omet le point a et on la note df (différentielle de f). On a donc pour tout $h \in \mathbb{R}$,

$$\mathrm{d}f(h) = f'(a)h$$

Dans la pratique h qui représente un petit accroissement de la variable (entre le point a et le point a+h) se note dx ou dt etc...Essayons d'expliquer...

Considérons un cas particulier : on choisit la fonction g définie sur \mathbb{R} par g(x) = x. Pour tout $a \in \mathbb{R}$, g'(a) = 1. Donc pour tout $a \in \mathbb{R}$ et pour tout $h \in \mathbb{R}$,

$$dg_a(h) = g'(a)h = h$$

Autrement dit dg ne dépend pas du point a, on a dg(h) = dx(h) = h. On notera désormais h (un petit accroissement de la variable) dx. On déduit alors que si f est une fonction dépendant de la variable x alors

$$\mathrm{d}f = f'(x)\mathrm{d}x$$

Si f est une fonction qui dépend de la variable t, alors

$$\mathrm{d}f = f'(t)\mathrm{d}t$$

etc..

Exemples

- Lorsque dans vos EDL d'ordre 1 en physique, il apparait $\frac{di}{dt}$ on a simplement i'(t): en effet i est une fonction de la variable t alors di = i'(t)dt donc $i'(t) = \frac{di}{dt}$.
- Prenons f définie sur \mathbb{R} par $f(x) = \sin(x)$, alors $df = \cos(x)dx$.
- Prenons h définie sur \mathbb{R} par $h(t) = \cos(t)$, alors $dh = -\sin(t)dt$.
- Prenons g définie sur $]0, +\infty[$ par $g(x) = \ln(x)$ alors $dg = \frac{dx}{x}$.
- •

Voir tableau. Interprétation géométrique de la différentielle.